skip to main content


Search for: All records

Creators/Authors contains: "Fei, Huilong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Electrocatalysis plays an essential role in diverse electrochemical energy conversion processes that are vital for improving energy utilization efficiency and mitigating the aggravating global warming challenge. The noble metals such as platinum are generally the most frequently used electrocatalysts to drive these reactions and facilitate the relevant energy conversion processes. The high cost and scarcity of these materials pose a serious challenge for the wide-spread adoption and the sustainability of these technologies in the long run, which have motivated considerable efforts in searching for alternative electrocatalysts with reduced loading of precious metals or based entirely on earth-abundant metals. Of particular interest are graphene-supported single atom catalysts (G-SACs) that integrate the merits of heterogeneous catalysts and homogeneous catalysts, such as high activity, selectivity, stability, maximized atom utilization efficiency and easy separation from reactants/products. The graphene support features a large surface area, high conductivity and excellent (electro)-chemical stability, making it a highly attractive substrate for supporting single atom electrocatalysts for various electrochemical energy conversion processes. In this review, we highlight the recent advancements in G-SACs for electrochemical energy conversion, from the synthetic strategies and identification of the atomistic structure to electrocatalytic applications in a variety of reactions, and finally conclude with a brief prospect on future challenges and opportunities. 
    more » « less
  2. Abstract

    The electrochemical carbon dioxide reduction reaction (CO2RR) presents a viable approach to recycle CO2gas into low carbon fuels. Thus, the development of highly active catalysts at low overpotential is desired for this reaction. Herein, a high‐yield synthesis of unique star decahedron Cu nanoparticles (SD‐Cu NPs) electrocatalysts, displaying twin boundaries (TBs) and multiple stacking faults, which lead to low overpotentials for methane (CH4) and high efficiency for ethylene (C2H4) production, is reported. Particularly, SD‐Cu NPs show an onset potential for CH4production lower by 0.149 V than commercial Cu NPs. More impressively, SD‐Cu NPs demonstrate a faradaic efficiency of 52.43% ± 2.72% for C2H4production at −0.993 ± 0.0129 V. The results demonstrate that the surface stacking faults and twin defects increase CO binding energy, leading to the enhanced CO2RR performance on SD‐Cu NPs.

     
    more » « less
  3. Abstract

    Graphene‐supported single atomic metals (G‐SAMs) have recently attracted considerable research interest for their intriguing catalytic, electronic, and magnetic properties. The development of effective synthetic methodologies toward G‐SAMs with monodispersed metal atoms is vital for exploring their fundamental properties and potential applications. A convenient, rapid, and general strategy to synthesize a series of monodispersed atomic transition metals (for example, Co, Ni, Cu) embedded in nitrogen‐doped graphene by two‐second microwave (MW) heating the mixture of amine‐functionalized graphene oxide and metal salts is reported here. The MW heating is able to simultaneously induce the reduction of graphene oxide, the doping of nitrogen, and the incorporation of metal atoms into the graphene lattices in one simple step. The rapid MW process minimizes metal diffusion and aggregation to ensure exclusive single metal atom dispersion in graphene lattices. Electrochemical studies demonstrate that graphene‐supported Co atoms can function as highly active electrocatalysts toward the hydrogen evolution reaction. This MW‐assisted method provides a rapid and efficient avenue to supported metal atoms for wide ranges of applications.

     
    more » « less